Environmental and genetic influences on the germination of Arabidopsis thaliana in the field.

نویسندگان

  • Kathleen Donohue
  • Lisa Dorn
  • Converse Griffith
  • EunSuk Kim
  • Anna Aguilera
  • Chandra R Polisetty
  • Johanna Schmitt
چکیده

Seasonal germination timing strongly influences lifetime fitness and can affect the ability of plant populations to colonize and persist in new environments. To quantify the influence of seasonal environmental factors on germination and to test whether pleiotropy or close linkage are significant constraints on the evolution of germination in different seasonal conditions, we dispersed novel recombinant genotypes of Arabidopsis thaliana into two geographic locations. To decouple the photoperiod during seed maturation from the postdispersal season that maternal photoperiod predicts, replicates of recombinant inbred lines were grown under short days and long days under controlled conditions, and their seeds were dispersed during June in Kentucky (KY) and during June and November in Rhode Island (RI). We found that postdispersal seasonal conditions influenced germination more strongly than did the photoperiod during seed maturation. Genetic variation was detected for germination responses to all environmental factors. Transgressive segregation created novel germination phenotypes, revealing a potential contribution of hybridization of ecotypes to the evolution of germination. A genetic trade-off in germination percentage across sites indicated that determinants of fitness at or before the germination stage may constrain the geographic range that a given genotype can inhabit. However, germination timing exhibited only weak pleiotropy across treatments, suggesting that different sets of genes contribute to variation in germination behavior in different seasonal conditions and geographic locations. Thus, the genetic potential exists for rapid evolution of appropriate germination responses in novel environments, facilitating colonization across a broad geographic range.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential Expression of Arabidopsis thaliana Acid Phosphatases in Response to Abiotic Stresses

The objective of this research is to identify Arabidopsis thaliana genes encoding acid phosphatases induced by phosphate starvation. Multiple alignments of eukaryotic acid phosphatase amino acid sequences led to the classification of these proteins into four groups including purple acid phosphatases (PAPs). Specific primers were degenerated and designed based on conserved sequences of PAPs isol...

متن کامل

Gene transcriptomic profile in arabidopsis thaliana mediated by radiation-induced bystander effects

Background: The in vivo radiation-induced bystander effects (RIBE) at the developmental, genetic, and epigenetic levels have been well demonstrated using model plant Arabidopsis thaliana (A. thaliana). However, the mechanisms underlying RIBE in plants are not clear, especially lacking a comprehensive knowledge about the genes and biological pathways involved in the RIBE in plants. Materials and...

متن کامل

مشکلات روش‌های موجود و ارائه دو روش جدید کشت هیدروپونیک گیاه آرابیدوپسیس تالیانا

Arabidopsis thaliana is a suitable model plant for genetic and molecular biology studies in higher plants. However, its hydroponic culture for biochemical and physiological studies is a challenge due to small size, capillary roots and little biomass at maturity. Several cultural systems have been suggested for Arabidopsis thaliana hydroponic culture, each having special advantages and disadvant...

متن کامل

Negative control of Strictisidine synthase like-7 gene on salt stress resistance in Arabidopsis thaliana

Strictosidine synthase-like (SSL) is a group of gene families in the Arabidopsis genome, which whose orthologues in other plants are key enzymes in mono-terpenoid indole-alkaloid biosynthesis pathway. The SSL7 is upregulated upon treatments of Arabidopsis plants with signaling molecules such as SA, methyl jasmonate and ethylene. To find the functional role of the gene, a T-DNA-mediated knockout...

متن کامل

Molecular genetic control of leaf lifespan in plants - A review

Leaf senescence constitutes the last stage of leaf development in plants and proceeds through a highly regulated program in order to redistribution of micro- and macro-nutrients from the senescing leaves to the developing/growing plant organs. Initiation and progression of leaf senescence is accompanied by massive sequential alterations at various levels of leaf biology including leaf morpholog...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Evolution; international journal of organic evolution

دوره 59 4  شماره 

صفحات  -

تاریخ انتشار 2005